perm filename WISE3.AX[S78,JMC] blob
sn#363919 filedate 1978-06-26 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00002 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 declare INDCONST RW ε WORLD
C00007 ENDMK
C⊗;
declare INDCONST RW ε WORLD;
declare INDVAR w w1 w2 w3 w4 w5 ε WORLD;
declare INDVAR m n m1 m2 m3 n1 n2 n3 ε NATNUM;
declare INDCONST W1 W2 W3 W123 ε PERSON;
declare INDVAR p p0 p1 p2 ε PERSON;
declare PREDCONST A(WORLD,WORLD,PERSON,NATNUM);
declare INDVAR c c1 c2 c3 c4 ε COLORS;
declare INDCONST W B ε COLORS;
declare OPCONST color(PERSON,WORLD) = COLORS;
axiom reflex: ∀w p m.A(w,w,p,m);;
axiom transitive: ∀w1 w2 w3 p m.(A(w1,w2,p,m) ∧ A(w2,w3,p,m) ⊃ A(w1,w3,p,m));;
axiom who: ∀p.(p=W1 ∨ p=W2 ∨ p=W3 ∨ p=W123);;
axiom w123: ∀w1 w2 m.(A(w1,w2,W1,m) ∨ A(w1,w2,W2,m) ∨ A(w1,w2,W3,m)
⊃ A(w1,w2,W123,m))
;;
axiom foolscap: ∀w.(color(W123,w)=W);;
axiom color: ¬(W=B)
∀c.(c=W ∨ c=B)
;;
axiom rw: color(W1,RW) = W ∧ color(W2,RW) = W ∧ color(W3,RW) = W;;
axiom initial: ∀c w.(A(RW,w,W123,0) ⊃
(c=W ∨ color(W2,w)=W ∨ color(W3,w)=W
⊃ ∃w1.(A(w,w1,W1,0) ∧ color(W1,w1) = c)) ∧
(c=W ∨ color(W1,w)=W ∨ color(W3,w)=W
⊃ ∃w1.(A(w,w1,W2,0) ∧ color(W2,w1) = c)) ∧
(c=W ∨ color(W1,w)=W ∨ color(W2,w)=W
⊃ ∃w1.(A(w,w1,W3,0) ∧ color(W3,w1) = c)))
∀w w1.(A(RW,w,W123,0) ∧ A(w,w1,W1,0)
⊃ color(W2,w1) = color(W2,w) ∧ color(W3,w1) = color(W3,w))
∀w w1.(A(RW,w,W123,0) ∧ A(w,w1,W2,0)
⊃ color(W1,w1) = color(W1,w) ∧ color(W3,w1) = color(W3,w))
∀w w1.(A(RW,w,W123,0) ∧ A(w,w1,W3,0)
⊃ color(W1,w1) = color(W1,w) ∧ color(W2,w1) = color(W2,w))
;;
comment : initial establishes the existence of enough possible worlds. :
axiom king: ∀w.(A(RW,w,W123,0) ⊃ color(W1,w)=W ∨ color(W2,w)=W
∨ color(W3,w)=W);;
axiom elwek1: ∀w.(A(RW,w,W123,1) ≡ A(RW,w,W123,0) ∧
∀p.(∀w1.(A(w,w1,p,0) ⊃ color(p,w1)=color(p,w)) ≡ ∀w1.(A(RW,w1,p,0)
⊃ color(p,w1)=color(p,RW))))
∀w1 w2.(A(w1,w2,W1,1) ≡ A(w1,w2,W1,0) ∧ A(w1,w2,W123,1))
∀w1 w2.(A(w1,w2,W2,1) ≡ A(w1,w2,W2,0) ∧ A(w1,w2,W123,1))
∀w1 w2.(A(w1,w2,W3,1) ≡ A(w1,w2,W3,0) ∧ A(w1,w2,W123,1))
;;
axiom elwek2: ∀w.(A(RW,w,W123,2) ≡ A(RW,w,W123,1) ∧
∀p.(∀w1.(A(w,w1,p,1) ⊃ color(p,w1)=color(p,w)) ≡ ∀w1.(A(RW,w1,p,1)
⊃ color(p,w1)=color(p,RW))))
∀w1 w2.(A(w1,w2,W1,2) ≡ A(w1,w2,W1,1) ∧ A(w1,w2,W123,1))
∀w1 w2.(A(w1,w2,W2,2) ≡ A(w1,w2,W2,1) ∧ A(w1,w2,W123,1))
∀w1 w2.(A(w1,w2,W3,2) ≡ A(w1,w2,W3,1) ∧ A(w1,w2,W123,1))
;;
COMMENT : elwek1 and elwek 2 thell what happens when everyone learns
whether everyone else knows the color of his spot. The sentence starting ∀p.
says that p knows the color of his spot in w iff he knows it in RW. :